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Optimal Load Shedding in Electric Power Grids

Fu Lin and Chen Chen

Abstract— We consider the optimal load-shedding prob-
lem in electric power systems where a number of trans-
mission lines are to be taken out of service. The nonlinear
power flow equations and the binary decision variables lead
to a mixed-integer nonlinear program. We show that the
load-shedding problem has separable structure that can be
exploited by using the alternating direction method of mul-
tipliers. We show that the subproblems in the alternating
method can be solved efficiently. Numerical experiments
with the IEEE 118-bus test case illustrate the effectiveness
of the developed approach. Our computational results
suggest that removing transmission lines between load
buses results in less load shedding.

Keywords: Alternating direction method of multi-
pliers, load-shedding problem, mixed-integer nonlinear
programs, power systems, separable structure.

I. INTRODUCTION

Redundancy of interconnection in power systems is
known to help prevent cascade blackout [1]. On the
other hand, a new study suggests that having too much
interconnectivity in power networks can result in exces-
sive capacity, which in turn fuels larger blackout [2].
Therefore, a balance between the operational robustness
and the network interconnectivity is important for power
grid operations.

Traditionally, contingency analysis in power grids has
focused on the severity of line outages using linearized
power flow models; see [3]. Recent years have seen
vulnerability analysis of line outages using nonlinear
power flow models; see [4]-[6]. The objective of these
studies is to identify transmission lines whose removal
leads to the maximum damage (e.g., in load shedding) to
power systems. The optimal transmission switching is a
related line of research that focuses on the switching
of transmission lines to reduce congestion in power
grids [7], [8].

While identifying vulnerability in power systems is
important, identifying redundancy in power systems is
equally important. By redundancy, we mean the compo-
nents (e.g., transmission lines) in the power grid whose
removal does not change the grid operation significantly.
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Suppose that the power grid is operating at its nominal
point with a balance between load and power genera-
tion. Consider the situation in which the grid operator
must temporarily remove a number of transmission lines
because of, for example, maintenance or security exam-
ination [9]. The change of network topology implies a
change of the operating point. Following [4]-[6], we
measure the severity by the amount of load that must
be shed. Our objective is to identify a prespecified
number of lines whose removal results in minimum load
shedding subject to the nonlinear power flow constraints.
To this end, we formulate the optimal load-shedding
problem, which contains binary decision variables and
nonlinear AC power flow constraints. Therefore, it falls
into the class of mixed-integer nonlinear programs
(MINLPs). This challenging optimization problem is
beyond the capacities of the state-of-the-art MINLP
solvers even for small power systems. We show that the
problem has a separability structure; that is, all decision
variables are separable except for the coupling nonlinear
power flow constraints. To exploit this structure, we
develop an approach based on the alternating direction
method of multipliers (ADMM). While this approach
does not guarantee to converge to an optimal solution
of the nonconvex problem, our numerical experiments
on the IEEE 118-bus test case show promising results.
Our presentation is organized as follows. In Section II,
we introduce the notation and formulate the optimal
load-shedding problem. In Section III, we study the
separable structure of the load-shedding problem. In
Section IV, we describe the ADMM algorithm and
show that each optimization subproblem can be solved
efficiently. In Section V, we provide numerical results
for the IEEE 118-bus test case. In Section VI, we
conclude the paper by summarizing our contributions.

II. OPTIMAL LOAD-SHEDDING PROBLEM

We consider a lossless power network with n buses
and m lines. A line [ connecting bus ¢ and buse j can be
described by a vector ¢; € R™ with 1 and —1 at the ¢th
and jth elements, respectively, and 0 everywhere else.
Let E = [e1- e ] € R*™™™ be the incidence matrix
that describes m transmission lines of the network, and
let D € R™ ™ be a diagonal matrix with the [th
diagonal element being the admittance of line [. For
a lossless power grid with fixed voltage at the buses,
the active power flow equation can be written in matrix



form [4]
EDsin(ET9) = P,

where 6§ € R” is the phase angles and P € R" is the
real power injection at the buses. We numerate the buses
such that the power injection P can be partitioned into
a load vector P, < 0 and a generation vector P, > 0,
thus, P = [P P]']". The sequence of buses indexed in
P is the same with that of the columns of the incidence
matrix F. We assume that the power system is lossless,
so the sum of load is equal to the sum of generation

1Tp =0,

where 1 is the vector of all ones.

Our objective is to identify a small number of lines
whose removal leads to the minimum change of total
load in the power system. Let v € {0,1}™ denote

whether a line is in service or not: v, = 1 if line [
is in service and «; = 0 if line [ is out of service. Let
z = [le z;]T € R”, where z; > 0 and z;, < 0 are

the load-shedding vector and the generation reduction
vector, respectively. Then, it follows that

P<P+2z<0 0<P +2z <P,

where the upper (resp. lower) bound 0 enforces P} + z;
(resp. Py + z4) to be a load (resp. generator) vector.

Since the load shed must be equal to the generation
reduction, we have

172 = 0.

Now the active power flow equation with possible line
removal can be written as

EDTsin(ET0) = P + 2,

where I' = diag(y) is a diagonal matrix with its main
diagonal equal to ~.

Our objective is to identify a small number of lines
in the power network whose removal will result in
the minimum load shedding. Thus, we consider the
following optimal load-shedding problem:

r%iyr;ivrai%e LoadShedding = 17z (1a)
subject to EDTsin(ET0) = P + = (1b)
I = diag(y) (lc)
ye{o,1}™ m-1Ty = K (1d)
172 =0, 2=z qu}T (le)
P <P +2z<0,0<P;+2, <P, (1f)
-5 < ET6< (1g)

The decision variables are the phase angle 6, the re-
duction of load and generation z, the out-of-service line

indicator -, and the diagonal matrix I". The problem data
are the incidence matrix F, the admittance matrix D,
the real power injection at the buses P, and the number
of out-of-service lines K. The angle difference between
buses E70 takes values between —/2 and 7/2.

Note that the adaption of our model (1) to the max-
imum load-shedding problem is immediate. The load-
shedding problem is based on the model originally in-
troduced in [4]. Additional discussions of related models
can be found in [4]-[6].

III. THE SEPARABLE STRUCTURE

The load-shedding problem (1) is a nonlinear program
with binary variables. One source of nonlinearity is
the sinusoidal function sin(E7'9), and another source is
the multiplication between I' and sin(ET#). Therefore,
it falls into the class of mixed-integer nonlinear pro-
grams (MINLPs), which are challenging problems. In
particular, finding a feasible point for MINLPs can be
computationally expensive or even NP-hard [10]-[12].

The minimum load-shedding problem (1) turns out
to have a separable structure that can be exploited. In
what follows, we discuss this structure and develop an
algorithm based on the alternating direction method of
multipliers.

A closer look of (1) reveals that the only constraint
that couples all variables, 0, z,, and T, is the power
flow equation (1b). On the other hand, the diagonal
matrix I' is determined by ~ in (1c). The binary variable
v is subject only to the cardinality constraint (1d). The
load- and generation-shedding variable z is subject to
the losslessness constraint (le) and the elementwise
box constraint (1f). The phase angle 6 is subject only
to the linear inequality constraint (1g). Therefore, the
constraints in the load-shedding problem (1) are sepa-
rable with respect to 6, z,~, and I, if the power flow
equation (1b) is relaxed.

The idea is then to dualize (1b) by introducing the
Lagrangian multiplier. Let us denote the coupling con-
straint as

c(0,z,v) = EDT'sin(ETH) — (P + 2).

Consider the minimization of the partial augmented



Lagrangian function of (1):
‘CP(9727’Y7F7)‘) = 1Tzl
+Te(0,2,7) + Elled, 21
subject to T = diag(v)
v € {0, 1},
T TIT

172 =0, z=[z 2]

-PZS-PZ—'_ZISO,OSPQ"_ZQSPQ

minimize
0,z,7v,T

m—1Ty = K

< ET9 <

il
27

oY

2
where A € R" is the Lagrange multiplier and p is a
positive scalar.
Clearly, (2) is a relaxation of the load-shedding prob-
lem (1), since the power flow equation

c(0,z,7) = 0

is no longer enforced in (2). The penalty of the constraint
violation is controlled by the positive scalar p in the ob-
jective function £,. By solving the relaxed problem (2)
with an appropriate choice of A and a sufficiently large
p, the minimizer of (2) provides a feasible solution for
(1) when the residual ||c(6, z,)||2 is sufficiently small.

IV. ADMM ALGORITHM

The ADMM algorithm has proved effective for many
problems; see the survey paper [13]. Among other
applications in control, ADMM has been successfully
applied to the design of sparse feedback gain [14], the
leader selection problem in consensus networks [15],
and the completion of state covariances [16].

We next develop an alternating direction method that
exploits the separable structure of (2). Roughly speaking,
we minimize £, with respect to 6, z, or 7, one at a
time, while fixing the other variables constant. For ease
of presentation, we introduce the following indicator
functions:

0, ifye {01}, m—-1Ty = K
o1(7y) = .
00, otherwise
(3)
$a(2) = and 0 < Py + 2z, < P, (4
oo, otherwise
and
0, if T <ETg< ™
¢3(0) = 2 2 (5)
oo, otherwise.

With these indicator functions, we can compactly ex-
press the minimization problem of the augmented La-
grangian (2) as

Ep(9a27%ra/\) = (bl(f}/) + ¢2(Z) + ¢3(9)
172+ Ele(6,2,7) + Mol3,

minimize
0,2z,v,T

where we used the completion of squares and omitted
the constant terms in .

We can now present the alternating method in Algo-
rithm 1.

Algorithm 1 An ADMM algorithm for (2).

1: Start with an initial guess (7°,2% 6° A\°) and set
k+ 0.
repeat

2:

3 Rt = argmin, L, ( L 28 0k )
4: L= argmin, £,(vFT, 2,08 \F)
5 g
6

7:

Ok+1 .= argmin, £,(v* 1, 281, 0, \F)
)\k+1 — /\k +pC(’yk+1,Zk+1,9k+l)

until The stopping criterion (6) is satisfied.

We stop the ADMM algorithm when both the primal
and the dual residuals are sufficiently small:

‘|C(0k+1vzk+177k+1)H < €prim

[0 — 0% + [ 25+ = 28] + 75 = 7]l < eauan.

(6)

Recall that the primal residual |c(6, z,)|| determines

the solution accuracy for the power flow equations. We
use an absolute and relative criterion [13],

€prim = \/ﬁeabs + €rel maX(HTk”Qa szHZa HP”Z)a

€dual = \/ﬁeabs + ErCIHAk”?a

where

rk .= ED diag(v*)sin(ET6%)

and n is the number of buses.

Since the relaxed load-shedding problem (2) is still a
nonconvex optimization problem with binary variables,
the ADMM algorithm may not converge, for example,
when p is not sufficiently large. In that case ADMM
cycles through two or more feasible solutions with the
same number of nonzero elements in . In numerical
experiments in Section V, the positive scalar p = 10*
works well. The ADMM algorithm typically converges
in tens of iterates.

We next elaborate on the minimization steps for v, z,
and 6.



A. The ~y-Minimization Step
Let § = 1 —~. Then the ~y-minimization problem can
be expressed as

minimize 5) = g Hc(&k,zk,lfé)Jr)\k/pH;

subject to 6 € {0,1}™, 176 = K

With some algebra, we can rewrite the quadratic objec-
tive function as

a(0) = £ |[prrs — o[,

where
MP* = ED diag(sin(ET6%))

and
Vo= MR+ NFJp — (P 4 2.

Therefore, the y-minimization step can be interpreted
as finding K columns of matrix MF* such that their
summation is closest to b*. This combinatorial problem
has been studied extensively in the context of signal
recovery; see [17], [18].

We use a simple greedy heuristic that works well in
practice [17]: Find the column of M k that is closest to
b¥, subtract that column from b, and repeat until all i
columns have been chosen. It was shown in [18] that the
global solution can be found via the greedy algorithm
under certain orthogonality conditions on the coefficient
matrix MF.

B. The z-Minimization Step
With some algebra, one can show that the z-

minimization problem can be expressed as

minimize 172+ 2|V~ a2+ 2 [V - 2

subjectto P < P +2 < 0,0 < Py+24 < P,
where

VF = EDsin(ETH*1) + A\ /p — 2
and V¥ = [(VF)T (V)T is partitioned with respect
to the load and the generation variables. This convex

quadratic program with simple box constraints has the
following analytical solution:

(VEYi, if —(Py)i < (VF)i <0
(2g)i = 4 O, if (V)i < —(Py)i
= (Py)is i (V)i >0
and
(VF)i+ 5, 30 < (VF)i+ g < —(R)
(z1)i = 4 0, it (VF)i+5 <0
—(P1)is it (V)i > —(R)s,

where we use (+); to denote the ith element of a vector.

C. The 0-Minimization Step

The 6-minimization problem can be expressed as
follows:

minimize g |e(8, 251 AF ) + )\’“/pHi
subject to —— < ETH < =

2 2
Let us denote

C* .= ED diag(y**1),

d*¥ = P + M — N\F/p,
and
y = ET6.
Then we can rewrite the #-minimization problem as
minimize g |C* sin(y) — dkHi
bjectto —= <y < =
subject to —— —.
] 5 = ¥Y=3

With a change of variable x := sin(y), we get
Pk k|2
9 HC v —d HQ

-1 <z <1

minimize
subject to

This is a bound-constrained least-squares problem that
can be solved efficiently, for example, by the two-metric
projection method [19] or the trust-region methods im-
plemented in quadratic programming solvers in Matlab.
Having found the solution z, we take

y = arcsin(z),

which yields a unique solution in the interval

[—7/2,7/2]. We then compute
0 = (E")'y,
where (ET)T is the pseudoinverse of E7.

V. NUMERICAL RESULTS

We use the IEEE 118-bus system as a test case for the
minimum load-shedding problem (1). Figure 1 shows
a diagram of the IEEE 118-bus test case. This power
system has 54 generator buses, 64 load buses, and 186
transmission lines. We obtain the generation P, and
load P, profiles by solving the steady-state power flow
equations via MATPOWER [20].

Our numerical experiments are performed on a work-
station with 32 GB memory and two Intel E5430 Xeon
4-core 2.66 GHz CPUs running Matlab R2013a in
Ubuntu 12.04. We set the maximum number of ADMM
steps to be MaxlIter = 103, the relative stopping criterion
to be €1 = 1075, the absolute stopping criterion to be
€abs = 1074, and the positive scalar to be p = 10%. We
observe that the ADMM algorithm typically converges
in tens of iterates.



TABLE I: load-shedding strategy for the IEEE 118-bus
test case. The lines to be removed are highlighted in
Fig. 2 and Fig. 3.

K | Load Shed (MW) | Percentage Lines Removed

1 0 0 73

2 2.3735 0.054% 73, 146

3 3.6870 0.084% 73, 88, 146

4 6.1867 0.141% 59, 73, 88, 146

5 9.1851 0.230% 59, 73, 88, 146, 185

We start by solving the minimum load-shedding prob-
lem (1) with K = 1, that is, removing only one line.
The IEEE 118-bus test case turns out to have enough
redundancy in the system that removing line [ = 73
(highlighted in Fig. 2) does not result in shedding any
load. In other words, the power network has enough
capacity to route the same amount of power flow without
using line | = 73.

Since the load shedding is zero for K = 1, we have
proved that the global solution for the MINLP (1) has
been found by the ADMM algorithm.

We next set K = 2, that is, removing two transmission
lines. In this case, the amount of load to be shed is
2.3735 MW, which is 0.054% of the total load 4374.9
MW. The lines to be removed are [ = 73 and [ = 146,
highlighted in Fig. 2 and Fig. 3, respectively.

As we increase K, the amount of load-shedding
increases. The computational results for K = 1,2,3,4,5
are summarized in Table I. Note that the set of lines to
be removed for K contains the set of lines for K — 1.
While the selected lines may not be the optimal solutions
of (1), they are feasible solutions, therefore providing an
upper bound on the optimal value of (1).

Figure 2 and Figure 3 show the northeast and the
southeast corner of the system, respectively. We high-
light the set of lines to be taken out of service. Lines
59, 73, and 88 are highlighted, respectively, in blue,
yellow, and green color in Fig. 2; Lines 146 and 185
are highlighted, respectively, in red and purple color
in Fig. 3. The reason that removing line 73 does not
result in load-shedding is that it connects two load buses
52 and 53, both of which have direct connections to
generator buses; see Fig. 2.

Table II shows the type of buses connected by the
out-of-service lines. Note that all buses in Table II are
load buses except bus 59, which is a generator bus. This
result suggests that taking lines between load buses out
of service leads to less load-shedding.

Fig. 2: Northeast corner of the IEEE 118-bus test case.
Lines 59, 73, and 88 to be taken out of service are
highlighted, respectively, in blue, yellow, and green
color.
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Fig. 3: Southeast corner of the IEEE 118-bus test case.
Lines 146 and 185 to be taken out of service are
highlighted in red and purple color, respectively.



TABLE 1II: Set of lines and the bus types. Lines 59, 73,
and 88 are highlighted in Fig. 2. Lines 146 and 185 are
highlighted in Fig. 3.

Line | Bus | Type | Bus | Type Color Figure
59 43 load 44 load blue 2
73 52 load 53 load | yellow 2
88 59 gen 60 load green 2
146 93 load 94 load red 3
185 75 load 118 | load | purple 3

VI. CONCLUSIONS

In this paper, we formulate the minimum load-
shedding problem for electric power systems. Our ob-
jective is to choose a prespecified number of lines to
be taken offline to minimize the amount of load shed.
The AC power flow equations and the binary decision
variables lead to a mixed-integer nonlinear program.
We show that this challenging problem has a separable
structure that can be exploited by an ADMM algorithm.
Numerical experiments on the IEEE 118-bus test case
demonstrate the effectiveness of the developed approach.
In particular, when a single line is to be taken out, the
ADMM algorithm finds the global solution. Numerical
results suggest that selecting lines that connect load
buses results in less load shedding.
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